翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Liouville's theorem on diophantine approximation : ウィキペディア英語版
Liouville number
In number theory, a Liouville number is an irrational number ''x'' with the property that, for every positive integer ''n'', there exist integers ''p'' and ''q'' with ''q'' > 1 and such that
:0< \left |x- \frac \right| < \frac{q^{n}}.
A Liouville number can thus be approximated "quite closely" by a sequence of rational numbers. In 1844, Joseph Liouville showed that all Liouville numbers are transcendental, thus establishing the existence of transcendental numbers for the first time.
== The existence of Liouville numbers (Liouville's constant) ==
Here we show that Liouville numbers exist by exhibiting a construction that produces such numbers.
For any integer ''b'' ≥ 2, and any sequence of integers (''a''1, ''a''2, …, ), such that ''a''''k'' ∈ , ∀''k'' ∈ , define the number
:x = \sum_^\infty \frac\,; \quad p_n = q_n \sum_^n \frac\right| = \sum_^\infty \frac^\infty \frac^\infty \frac = \frac^\infty \frac = \frac = \frac}^n}\,,
...where the last equality follows from the fact that
:n\cdot n! = n\cdot n! + n! - n! = (n+1)! - n!\;.
Therefore, we conclude that any such ''x'' is a Liouville number.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Liouville number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.